Part Number Hot Search : 
GP2U05 ICS91 2MBI150 SB130 DDL250F S25VB100 TS488IST 2SC1051
Product Description
Full Text Search
 

To Download HA1630D01 Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
 HA1630D01/02/03 Series
Ultra-Small Low Voltage Operation CMOS Dual Operational Amplifier
REJ03D0800-0200 Rev.2.00 Feb 07, 2007
Description
The HA1630D01/02/03 are dual CMOS Operational Amplifiers realizing low voltage operation, low input offset voltage and low supply current. In addition to a low operating voltage from 1.8V, these device output can achieve full swing output voltage capability extending to either supply. Available in an ultra-small TSSOP-8 and MMPAK-8 package that occupy more small area against the SOP-8.
Features
* Low power and single supply operation * Low input offset voltage * Low supply current (per channel) VDD = 1.8 to 5.5 V VIO = 4.0 mV Max IDD = 15 A Typ (HA1630D01) IDD = 50 A Typ (HA1630D02) IDD = 100 /A Typ (HA1630D03) VOH = 2.9 V Min (at VDD = 3.0 V) IIB = 1 pA Typ
* Maximum output voltage * Low input bias current
Ordering Information
Type No. HA1630D01T HA1630D02T HA1630D03T HA1630D01MM HA1630D02MM HA1630D03MM Package Name TTP-8DA Package Code PTSP0008JC-B
MMPAK-8
PLSP0008JC-A
Rev.2.00 Feb 07, 2007 page 1 of 25
HA1630D01/02/03 Series
Pin Arrangement
VOUT1 1 VIN1(-) 2 VIN1(+) 3 VSS 4
-+ +-
8 VDD 7 VOUT2 6 VIN2(-) 5 VIN2(+)
Equivalent Circuit (per one channel)
VDD
VIN(-) VIN(+)
VOUT
VSS
Rev.2.00 Feb 07, 2007 page 2 of 25
HA1630D01/02/03 Series
Absolute Maximum Ratings
(Ta = 25C)
Items Symbol Ratings Unit Note Supply voltage VDD 7 V Differential input voltage VIN(diff) -VDD to +VDD V Input voltage VIN -0.3 to +VDD V *1 Power dissipation PT 240/145 mW TTP-8DA/MMPAK-8 *2 Operating temp. Range Topr -40 to +85 C Storage temp. Range Tstg -55 to +125 C Notes: 1. Do not apply Input Voltage exceeding VDD or 7 V. 2. The value of PTSP0008JC-B (TTP-8DAV) / PLSP0008JC-A (MMPAK-8). It computes from heat resistance ja = 520C/W, and 690C/W each other.
Electrical Characteristics
(VDD = 3.0 V, Ta = 25C)
Items Input offset voltage Input offset current Input bias current Output high voltage Output source current Symbol VIO IIO IIB VOH IO SOURCE Min -- -- -- 2.9 6 25 50 -- -- -- -- -0.1 to 2.1 -- -- -- 60 -- -- -- 60 60 -- -- -- Typ -- (1.0) (1.0) -- 12 50 100 -- (0.8) (1.0) (1.2) -- (0.125) (0.50) (1.00) 80 (200) (680) (1200) 80 80 30 100 200 Max 4.0 -- -- -- -- -- -- 0.1 -- -- -- -- -- -- -- -- -- -- -- -- -- 60 200 400 Unit mV pA pA V A Test Condition Vin = 1.5 V Vin = 1.5 V Vin = 1.5 V RL = 1 M VOH = 2.5 V (HA1630D01) VOH = 2.5 V (HA1630D02) VOH = 2.5 V (HA1630D03) RL = 1 M VOL = 0.5 V (HA1630D01) VOL = 0.5 V (HA1630D02) VOL = 0.5 V (HA1630D03)
Output low voltage Output sink current
VOL IO SINK
V mA
Common mode input voltage range Slew rate
VCM SR
V V/s CL = 20 pF (HA1630D01) CL = 20 pF (HA1630D02) CL = 20 pF (HA1630D03) CL = 20 pF (HA1630D01) CL = 20 pF (HA1630D02) CL = 20 pF (HA1630D03)
Voltage gain Gain bandwidth product
AV BW
dB kHz
Power supply rejection ratio Common mode rejection ratio Supply current
PSRR CMRR IDD
dB dB A
RL = (HA1630D01) RL = (HA1630D02) RL = (HA1630D03)
Note:
1. ( ) : Design specification
Rev.2.00 Feb 07, 2007 page 3 of 25
HA1630D01/02/03 Series Table of Graphs
Electrical Characteristics Supply current IDD vs Supply voltage vs Ambient temperature Output high voltage VOH vs Output source current vs Supply voltage Output source current IO SOURCE vs Ambient temperature Output low voltage VOL vs Output sink current Output sink current IO SINK vs Ambient temperature Input offset voltage VIO Distribution vs Supply voltage vs Ambient temperature vs Ambient temperature VCM Common mode input voltage range Power supply rejection ratio Common mode rejection ratio Voltage gain & phase angle Input bias current Slew Rate (rising) Slew Rate (falling) Slew rate PSRR CMRR AV IIB SRr SRf vs Frequency vs Frequency vs Frequency vs Ambient temperature vs Input voltage vs Ambient temperature vs Ambient temperature Large signal transient response Small signal transient response vs. Output voltage p-p vs. Output voltage p-p vs Frequency vs Frequency vs Frequency
HA1630D01 Figure HA1630D02 Figure HA1630D03 Figure
1-1 1-2 1-3 1-4 1-5 1-6 1-7 1-8 1-9 1-10 1-11 1-12 1-13 1-14 1-15 1-16 1-17 1-18 1-19 1-20 -- -- 1-21 1-22 1-23
2-1 2-2 2-3 2-4 2-5 2-6 2-7 2-8 2-9 2-10 2-11 2-12 2-13 2-14 2-15 2-16 2-17 2-18 2-19 2-20 2-21 2-22 2-23 2-24 2-25
3-1 3-2 3-3 3-4 3-5 3-6 3-7 3-8 3-9 3-10 3-11 3-12 3-13 3-14 3-15 3-16 3-17 3-18 3-19 3-20 3-21 3-22 3-23 3-24 3-25
Test Circuit 2 4 6 5 6 1
7 1 7 10 3 9
Total harmonic distortion + noise Maximum p-p output voltage Voltage noise density Channel separation
(0 dB) (40 dB)
8
Rev.2.00 Feb 07, 2007 page 4 of 25
HA1630D01/02/03 Series
Main Characteristics (HA1630D01)
Figure 1-1. HA1630D01 Supply Current vs. Supply Voltage 50
Supply Current IDD (A)
Figure 1-2. HA1630D01 Supply Current vs. Ambient Temperature 50
Supply Current IDD (A)
VDD = 5.0 V VDD = 3.0 V VDD = 1.8 V
Ta = 25C
40 30 20 10 0 1 2 3 4 5 Supply Voltage VDD (V) 6
40 30 20 10 0 -40
-20 0 20 40 60 80 Ambient Temperature Ta (C)
100
Figure 1-3. HA1630D01 Output High Voltage vs. Output Source Current
Output High Voltage VOH (V)
Ta = 25C
Figure 1-4. HA1630D01 Output High Voltage vs. Supply Voltage
Output High Voltage VOH (V)
6 5 VDD = 5.5 V 4 3 2 1 0 0
VDD = 3.0 V VDD = 1.8 V
6 5 4 3 2 1
Ta = 25C RL = 1 M RL = 510 k
5 10 15 20 Output Source Current IOSOURCE (A)
1
2
3 4 5 Supply Voltage VDD (V)
6
Figure 1-5. HA1630D01 Output Source Current vs. Ambient Temperature 50
Output Source Current IOSOURCE (A)
40 30 20 10 0 -40
VDD = 5.0 V VDD = 3.0 V VDD = 1.8 V
-20
0
20
40
60
80
100
Ambient Temperature Ta (C)
Rev.2.00 Feb 07, 2007 page 5 of 25
HA1630D01/02/03 Series
Figure 1-6. HA1630D01 Output Low Voltage vs. Output Sink Current
Output Low Voltage VOL (V)
Figure 1-7. HA1630D01 Output Sink Current vs. Ambient Temperature 2.0
VDD = 5.0 V
2.0 1.5 1.0 0.5 0 0 0.5 Output Sink Current IOSINK (mA) 1.0
VDD = 5.0 V VDD = 3.0 V VDD = 1.8 V
Output Sink Current IOSINK (mA)
1.5 1.0 0.5 0 -40
VDD = 3.0 V VDD = 1.8 V
-20 0 20 40 60 80 Ambient Temperature Ta (C)
100
Figure 1-8. HA1630D01 Input Offset Voltage Distribution
Input Offset Voltage VIO (mV)
Figure 1-9. HA1630D01 Input Offset Voltage vs. Supply Voltage 4 2 1 0 -1 -2 -3 -4 1 2 3 4 5 Supply Voltage VDD (V) 6
Ta = 25C
50
Percentage (%)
40 30 20 10 0
Ta = 25C VDD = 3.0 V
3 VIN = 0.5 V
-4
-3 -2 -1 0 1 2 3 Input Offset Voltage VIO (mV)
4
Figure 1-10. HA1630D01 Input Offset Voltage vs. Ambient Temperature
Input Offset Voltage VIO (mV)
Figure 1-11. HA1630D01 Common Mode Input Voltage vs. Ambient Temperature 3.0
Common Mode Input Voltage VCM (V)
4 3 2 1 0 -1 -2 -3 -4 -40 -20 0 20 40 60 80 100
VDD = 5.0 V, VIN = 2.5 V VDD = 1.8 V, VIN = 0.9 V VDD = 3.0 V, VIN = 1.5 V
2.0
VDD = 3.0 V
1.0 0
-1.0 -40
-20
0
20
40
60
80
100
Ambient Temperature Ta (C)
Ambient Temperature Ta (C)
Rev.2.00 Feb 07, 2007 page 6 of 25
HA1630D01/02/03 Series
Figure 1-12. HA1630D01 Power Supply Rejection Ratio vs. Frequency
Power Supply Rejection Ratio PSRR (dB)
120 100 80 60 40 20 0 10 100 1k 10k 100k
Ta = 25C VDD = 3.0 V RL = 1 M CL = 20 pF
1M
Frequency f (Hz) Figure 1-13. HA1630D01 Common Mode Rejection Ratio vs. Frequency
Common Mode Rejection Ratio CMRR (dB)
120 100 80 60 40 20 0 10 100 1k 10k 100k
Ta = 25C VDD = 3.0 V RL = 1 M CL = 20 pF
1M
Frequency f (Hz) Figure 1-14. HA1630D01 Open Loop Voltage Gain and Phase Angle vs. Frequency 100
Open Loop Voltage Gain AVOL (dB)
60 40
Phase Angle
90 45
Phase Margin: 50 deg
20 0 -20 -40 10 100 1k 10k 100k
0 -45 -90 1M
Frequency f (Hz)
Rev.2.00 Feb 07, 2007 page 7 of 25
Phase Angle (deg)
80
Open Loop Voltage Gain
Ta = 25C VDD = 3.0 V 180 RL = 1 M CL = 20 pF 135
225
HA1630D01/02/03 Series
Figure 1-15. HA1630D01 Input Bias Current vs. Ambient Temperature Figure 1-16. HA1630D01 Input Bias Current vs. Input Voltage
Input Bias Current IIB (pA)
VDD = 3.0 V
Input Bias Current IIB (pA)
200 100 0 -100
200 100 0 -100 -200
Ta = 25C VDD = 3.0 V
-200 -40
-20 0 20 40 60 80 Ambient Temperature Ta (C)
100
0
0.5
1.0 1.5 2.0 Input Voltage VIN (V)
2.5
3.0
Figure 1-17. HA1630D01 Slew Rate (rising) vs. Ambient Temperature 0.20 0.20
Figure 1-18. HA1630D01 Slew Rate (falling) vs. Ambient Temperature
VDD = 5.0 V
Slew Rate SRr (V/s)
Slew Rate SRf (V/s)
VDD = 5.0 V
0.15 0.10 0.05 0 -40
VDD = 3.0 V VDD = 1.8 V
VDD = 3.0 V
0.15 0.10 0.05 0 -40
VDD = 1.8 V
-20
0
20
40
60
80
100
-20
0
20
40
60
80
100
Ambient Temperature Ta (C)
Ambient Temperature Ta (C)
Figure 1-19. HA1630D01 Large Signal Transient Response
Ta = 25C VDD = 3.0 V RL = 1 M CL = 20 pF
Figure 1-20. HA1630D01 Small Signal Transient Response
Ta = 25C VDD = 3.0 V RL = 1 M CL = 20 pF
Rev.2.00 Feb 07, 2007 page 8 of 25
HA1630D01/02/03 Series
Figure 1-21. HA1630D01 Voltage Output p-p vs. Frequency
Output Voltage Vout p-p (V)
3.5 3.0 2.5 2.0 1.5 1.0 0.5 0 100
Gain = 40 dB, Vp-p = 0.03 V Gain = 20 dB, Vp-p = 0.3 V Gain = 0 dB, Vp-p = 2.5 V
Ta = 25C VDD = 3.0 V
1k
10k Frequency f (Hz)
Figure 1-22. HA1630D01 Voltage Noise Density vs. Frequency
100k
1M
200
Voltage Noise Density (nV/Hz)
100
0 100
Frequency f (Hz)
Figure 1-23. HA1630D01 Channel Separation vs. Frequency
10k
Channel Separation C.S. (dB)
140 120 100 80 60 40 20 0 10 100 1k 10k Frequency f (Hz) 100k
CH2CH1
Ta = 25C VDD = 3.0 V RL = 1 M CL = 20 pF
CH1CH2
1M
Rev.2.00 Feb 07, 2007 page 9 of 25
HA1630D01/02/03 Series
Main Characteristics (HA1630D02)
Figure 2-1. HA1630D02 Supply Current vs. Supply Voltage 200 Figure 2-2. HA1630D02 Supply Current vs. Ambient Temperature 200
Supply Current IDD (A)
160 120 80 40 0 1 2 3 4 5 Supply Voltage VDD (V) 6
Supply Current IDD (A)
Ta = 25C
160 120 80 40 0 -40
VDD = 5.0 V VDD = 3.0 V VDD = 1.8 V
-20 0 20 40 60 80 Ambient Temperature Ta (C)
100
Figure 2-3. HA1630D02 Output High Voltage vs. Output Source Current
Figure 2-4. HA1630D02 Output High Voltage vs. Supply Voltage
Output High Voltage VOH (V)
5 4
VDD = 5.0 V
Ta = 25C
Output High Voltage VOH (V)
6
6 5 4 3 2 1
Ta = 25C RL = 1 M RL = 120 k
VDD = 3.0 V
3 2 1 0 0 10 20 30 40 50 60 Output Source Current IOSOURCE (A)
VDD = 1.8 V
1
2
3 4 5 Supply Voltage VDD (V)
6
Figure 2-5. HA1630D02 Output Source Current vs. Ambient Temperature 100
Output Source Current IOSOURCE (A)
80 60 40 20 0 -40
VDD = 5.0 V VDD = 3.0 V VDD = 1.8 V
-20
0
20
40
60
80
100
Ambient Temperature Ta (C)
Rev.2.00 Feb 07, 2007 page 10 of 25
HA1630D01/02/03 Series
Figure 2-6. HA1630D02 Output Low Voltage vs. Output Sink Current
Output Low Voltage VOL (V)
Figure 2-7. HA1630D02 Output Sink Current vs. Ambient Temperature 2.5
VDD = 5.0 V
2.0
Output Sink Current IOSINK (mA)
1.5 1.0 0.5 0 0
2.0 1.5 1.0 0.5 0 -40
VDD = 3.0 V
VDD = 5.0 V VDD = 3.0 V VDD = 1.8 V
VDD = 1.8 V
0.5 1.0 Output Sink Current IOSINK (mA)
1.5
-20 0 20 40 60 80 Ambient Temperature Ta (C)
100
Figure 2-8. HA1630D02 Input Offset Voltage Distribution
Input Offset Voltage VIO (mV)
Figure 2-9. HA1630D02 Input Offset Voltage vs. Supply Voltage 4 3 2 1 0 -1 -2 -3 -4 1 2 3 4 5 Supply Voltage VDD (V) 6
Ta = 25C VIN = 0.5 V
50
Percentage (%)
40 30 20 10 0
Ta = 25C VDD = 3.0 V
-4
-3 -2 -1 0 1 2 3 Input Offset Voltage VIO (mV)
4
Figure 2-10. HA1630D02 Input Offset Voltage vs. Ambient Temperature
Input Offset Voltage VIO (mV)
Figure 2-11. HA1630D02 Common Mode Input Voltage vs. Ambient Temperature 3.0
Common Mode Input Voltage VCM (V)
4 3 2 1 0 -1 -2 -3 -4 -40 -20 0 20 40 60 80 100
VDD = 5.0 V, VIN = 2.5 V VDD = 1.8 V, VIN = 0.9 V VDD = 3.0 V, VIN = 1.5 V
2.0
VDD = 3.0 V
1.0 0
-1.0 -40
-20
0
20
40
60
80
100
Ambient Temperature Ta (C)
Ambient Temperature Ta (C)
Rev.2.00 Feb 07, 2007 page 11 of 25
HA1630D01/02/03 Series
Figure 2-12. HA1630D02 Power Supply Rejection Ratio vs. Frequency
Power Supply Rejection Ratio PSRR (dB)
120 100 80 60 40 20 0 10 100 1k 10k 100k 1M
Ta = 25C VDD = 3.0 V RL = 1 M CL = 20 pF
Frequency f (Hz) Figure 2-13. HA1630D02 Common Mode Rejection Ratio vs. Frequency
Common Mode Rejection Ratio CMRR (dB)
120 100 80 60 40 20 0 10 100 1k 10k 100k 1M
Ta = 25C VDD = 3.0 V RL = 1 M CL = 20 pF
Frequency f (Hz) Figure 2-14. HA1630D02 Open Loop Voltage Gain and Phase Angle vs. Frequency 100
Open Loop Voltage Gain AVOL (dB)
225
Phase Angle (deg)
Open Loop Voltage Gain Ta = 25C VDD = 3.0 V 180 RL = 1 M CL = 20 pF 135
80 60 40 20 0 -20 -40 10 100
90
Phase Angle Phase Margin: 50 deg
45 0 -45 1k 10k Frequency f (Hz) 100k 1M -90 10M
Rev.2.00 Feb 07, 2007 page 12 of 25
HA1630D01/02/03 Series
Figure 2-15. HA1630D02 Input Bias Current vs. Ambient Temperature Figure 2-16. HA1630D02 Input Bias Current vs. Input Voltage
Input Bias Current IIB (pA)
VDD = 3.0 V
100 0 -100 -200
Input Bias Current IIB (pA)
200
200 100 0 -100 -200
Ta = 25C VDD = 3.0 V
0
25 50 75 Ambient Temperature Ta (C)
100
0
0.5
1.0 1.5 2.0 Input Voltage VIN (V)
2.5
3.0
Figure 2-17. HA1630D02 Slew Rate (rising) vs. Ambient Temperature 0.8 0.8
Figure 2-18. HA1630D02 Slew Rate (falling) vs. Ambient Temperature
Slew Rate SRr (V/s)
0.7 0.6 0.5 0.4 0.3 -40
Slew Rate SRf (V/s)
VDD = 5.0 V VDD = 3.0 V VDD = 1.8 V
VDD = 5.0 V
0.7 0.6 0.5 0.4 0.3 -40
VDD = 3.0 V VDD = 1.8 V
-20
0
20
40
60
80
100
-20
0
20
40
60
80
100
Ambient Temperature Ta (C)
Ambient Temperature Ta (C)
Figure 2-19. HA1630D02 Large Signal Transient Response
Ta = 25C VDD = 3.0 V RL = 1 M CL = 20 pF
Figure 2-20. HA1630D02 Small Signal Transient Response
Ta = 25C VDD = 3.0 V RL = 1 M CL = 20 pF
Rev.2.00 Feb 07, 2007 page 13 of 25
HA1630D01/02/03 Series
Figure 2-21. HA1630D02 Total Harmonic Distortion + Noise vs. Output Voltage p-p 10
T.H.D. + Noise (%)
VDD = 3.0 V Ta = 25C Gain = 0 dB
Figure 2-22. HA1630D02 Total Harmonic Distortion + Noise vs. Output Voltage p-p 10
T.H.D. + Noise (%)
1 0.1 0.01 0.001 0
1 0.1
f = 10 kHz f = 1 kHz f = 100 Hz
f = 10 kHz
f = 1 kHz
f = 100 Hz
0.01 V = 3.0 V DD
Ta = 25C Gain = 40 dB
0.001 0.5 1.0 1.5 2.0 2.5 3.0 0 Output Voltage Vout p-p (V)
0.5
1.0
1.5
2.0
2.5
3.0
Output Voltage Vout p-p (V)
Figure 2-23. HA1630D02 Voltage Output p-p vs. Frequency
Voltage Output Vout p-p (V)
3.5 3.0 2.5 2.0 1.5 1.0 0.5 0 100 1k 10k Frequency f (Hz) 100k
Gain = 0 dB, Vp-p = 2.5 V Gain = 40 dB, Vp-p = 0.03 V Gain = 20 dB, Vp-p = 0.3 V
Ta = 25C VDD = 3.0 V
1M
Figure 2-24. HA1630D02 Voltage Noise Density vs. Frequency 200
Voltage Noise Density (nV/Hz)
100
0 100 Frequency f (Hz)
10k
Rev.2.00 Feb 07, 2007 page 14 of 25
HA1630D01/02/03 Series
Figure 2-25. HA1630D02 Channel Separation vs. Frequency
140
Channel Separation (dB)
120 100 80 60
CH1CH2
Ta = 25C VDD = 3.0 V
CH2CH1
40 20 0 100 1k 10k Frequency f (Hz) 100k 1M
Rev.2.00 Feb 07, 2007 page 15 of 25
HA1630D01/02/03 Series
Main Characteristics (HA1630D03)
Figure 3-1. HA1630D03 Supply Current vs. Supply Voltage 400
Supply Current IDD (A) Supply Current IDD (A)
Ta = 25C
Figure 3-2. HA1630D03 Supply Current vs. Ambient Temperature 400
VDD = 5.0 V
300 200 100 0 1 2 3 4 5 Supply Voltage VDD (V) 6
300 200 100 0 -40
VDD = 3.0 V VDD = 1.8 V
-20 0 20 40 60 80 Ambient Temperature Ta (C)
100
Figure 3-3. HA1630D03 Output High Voltage vs. Output Source Current
Output High Voltage VOH (V)
Ta = 25C VDD = 5.5 V
Figure 3-4. HA1630D03 Output High Voltage vs. Supply Voltage
Output High Voltage VOH (V)
6 5 4 3
VDD = 3.0 V
6
Ta = 25C
5 4 3 2 1
RL = 1 M RL = 51 k
2 1 0 0 50 100 150 Output Source Current IOSOURCE (A)
VDD = 1.8 V
1
2
3 4 5 Supply Voltage VDD (V)
6
Figure 3-5. HA1630D03 Output Source Current vs. Ambient Temperature 200
Output Source Current IOSOURCE (A)
150 100 50 0 -40
VDD = 5.0 V VDD = 3.0 V VDD = 1.8 V
-20
0
20
40
60
80
100
Ambient Temperature Ta (C)
Rev.2.00 Feb 07, 2007 page 16 of 25
HA1630D01/02/03 Series
Figure 3-6. HA1630D03 Output Low Voltage vs. Output Sink Current
Output Low Voltage VOL (V)
Figure 3-7. HA1630D03 Output Sink Current vs. Ambient Temperature 2.5
VDD = 5.0 V
2.0
Output Sink Current IOSINK (mA)
1.5 1.0 0.5 0 0
VDD = 5.0 V VDD = 3.0 V VDD = 1.8 V
2.0 1.5 1.0 0.5 0 -40
VDD = 3.0 V
VDD = 1.8 V
0.5 1.0 Output Sink Current IOSINK (mA)
1.5
-20 0 20 40 60 80 Ambient Temperature Ta (C)
100
Figure 3-8. HA1630D03 Input Offset Voltage Distribution
Input Offset Voltage VIO (mV)
Figure 3-9. HA1630D03 Input Offset Voltage vs. Supply Voltage 4 3 2 1 0 -1 -2 -3 -4 1 2 3 4 5 Supply Voltage VDD (V) 6
Ta = 25C VIN = 0.5 V
50
Percentage (%)
40 30 20 10 0
Ta = 25C VDD = 3.0 V
-4
-3 -2 -1 0 1 2 3 Input Offset Voltage VIO (mV)
4
Figure 3-10. HA1630D03 Input Offset Voltage vs. Ambient Temperature
Input Offset Voltage VIO (mV)
Figure 3-11. HA1630D03 Common Mode Input Voltage vs. Ambient Temperature 3.0
Common Mode Input Voltage VCM (V)
4 3 2 1 0 -1 -2 -3 -4 -40 -20 0 20 40 60 80 100
VDD = 5.0 V, VIN = 2.5 V VDD = 1.8 V, VIN = 0.9 V VDD = 3.0 V, VIN = 1.5 V
2.0
VDD = 3.0 V
1.0 0
-1.0 -40
-20
0
20
40
60
80
100
Ambient Temperature Ta (C)
Ambient Temperature Ta (C)
Rev.2.00 Feb 07, 2007 page 17 of 25
HA1630D01/02/03 Series
Figure 3-12. HA1630D03 Power Supply Rejection Ratio vs. Frequency
Power Supply Rejection Ratio PSRR (dB)
120 100 80 60 40 20 0 10 100 1k 10k 100k 1M
Ta = 25C VDD = 3.0 V RL = 1 M CL = 20 pF
Frequency f (Hz) Figure 3-13. HA1630D03 Common Mode Rejection Ratio vs. Frequency
Common Mode Rejection Ratio CMRR (dB)
120 100 80 60 40 20 0 10 100 1k 10k 100k 1M
Ta = 25C VDD = 3.0 V RL = 1 M CL = 20 pF
Frequency f (Hz) Figure 3-14. HA1630D03 Open Loop Voltage Gain and Phase Angle vs. Frequency 100
Open Loop Voltage Gain AVOL (dB)
60 40 20 0 -20 -40 10 100 1k 10k Frequency f (Hz) 100k 1M
Phase Angle Phase Margin: 50 deg
90 45 0 -45 -90 10M
Rev.2.00 Feb 07, 2007 page 18 of 25
Phase Angle (deg)
80
Open Loop Voltage Gain
Ta = 25C VDD = 3.0 V 180 RL = 1 M CL = 20 pF 135
225
HA1630D01/02/03 Series
Figure 3-15. HA1630D03 Input Bias Current vs. Ambient Temperature
Input Bias Current IIB (pA)
VDD = 3.0 V
Figure 3-16. HA1630D03 Input Bias Current vs. Input Voltage
Input Bias Current IIB (pA)
200 100 0 -100 -200
200 100 0 -100 -200
Ta = 25C VDD = 3.0 V
0
20 40 60 80 Ambient Temperature Ta (C)
100
0
0.5
1.0 1.5 2.0 Input Voltage VIN (V)
2.5
3.0
Figure 3-17. HA1630D03 Slew Rate (rising) vs. Ambient Temperature 1.5
Slew Rate SRr (V/s)
VDD = 5.0 V VDD = 3.0 V VDD = 1.8 V
Figure 3-18. HA1630D03 Slew Rate (falling) vs. Ambient Temperature 1.5
Slew Rate SRf (V/s)
VDD = 5.0 V VDD = 3.0 V VDD = 1.8 V
1.2 0.9 0.6 0.3 0 -40
1.2 0.9 0.6 0.3 0 -40
-20
0
20
40
60
80
100
-20
0
20
40
60
80
100
Ambient Temperature Ta (C)
Ambient Temperature Ta (C)
Figure 3-19. HA1630D03 Large Signal Transient Response
Ta = 25C VDD = 3.0 V RL = 1 M CL = 20 pF
Figure 3-20. HA1630D03 Small Signal Transient Response
Ta = 25C VDD = 3.0 V RL = 1 M CL = 20 pF
Rev.2.00 Feb 07, 2007 page 19 of 25
HA1630D01/02/03 Series
Figure 3-21. HA1630D03 Total Harmonic Distortion + Noise vs. Output Voltage p-p 10
T.H.D. + Noise (%)
VDD = 3.0 V Ta = 25C Gain = 0 dB
Figure 3-22. HA1630D03 Total Harmonic Distortion + Noise vs. Output Voltage p-p 10
T.H.D. + Noise (%)
1 0.1
1
f = 10 kHz
0.1 0.01 V = 3.0 V DD
Ta = 25C Gain = 40 dB
f = 1 kHz f = 100 Hz
f = 10 kHz
0.01 0.001 0 0.5 1.0
f = 1 kHz
f = 100 Hz
0.001 1.5 2.0 2.5 3.0 0 Output Voltage Vout p-p (V)
0.5
1.0
1.5
2.0
2.5
3.0
Output Voltage Vout p-p (V)
Figure 3-23. HA1630D03 Voltage Output p-p vs. Frequency
Voltage Output Vout p-p (V)
3.5 3.0 2.5 2.0 1.5 1.0 0.5 0 100 1k 10k Frequency f (Hz) 100k
Gain = 40 dB, Vp-p = 0.03 V Gain = 20 dB, Vp-p = 0.3 V Gain = 0 dB, Vp-p = 2.5 V
Ta = 25C VDD = 3.0 V
1M
Figure 3-24. HA1630D03 Voltage Noise Density vs. Frequency 200
Voltage Noise Density (nV/Hz)
100
0 100 Frequency f (Hz)
10k
Rev.2.00 Feb 07, 2007 page 20 of 25
HA1630D01/02/03 Series
Figure 3-25. HA1630D03 Channel Separation vs. Frequency
140
Channel Separation (dB)
120 100 80 60 40 20 0 10 100 1k 10k Frequency f (Hz) 100k
CH1CH2
Ta = 25C VDD = 3.0 V
CH2CH1
1M
Rev.2.00 Feb 07, 2007 page 21 of 25
HA1630D01/02/03 Series
Test Circuits
1. Power Supply Rejection Ratio, PSRP & Voltage Offset, VIO VDD RF RS - + VIO VIO = VO - PSRR VO PSRR = -20log VO1 - VO2 VDD1 - VDD2 x RS RS + RF VDD 2 x RS R S + RF
VDD 2
RS
Measure VO corresponding to VDD1 = 1.8 V and VDD2 = 5.5 V 2. Supply Current, IDD VDD A - + VDD 2 VDD 2 A - + 3. Input Bias Current, IIB VDD
4. Output High Voltage, VOH VDD VOH RL = 1 M VIN1 = VDD / 2 - 0.05 V VIN2 = VDD / 2 + 0.05 V - + VIN1 VIN2 RL VO
5. Output Low Voltage, VOL VDD VOL RL = 1 M VIN1 = VDD / 2 + 0.05 V VIN2 = VDD / 2 - 0.05 V - + VIN1 VIN2 RL VO
Rev.2.00 Feb 07, 2007 page 22 of 25
HA1630D01/02/03 Series
6. Output Source Current, IOSOURCE & Output Sink Current, IOSINK VDD
IOSOURCE VO = VDD - 0.5 V VIN1 = VDD / 2 - 0.05 V VIN2 = VDD / 2 + 0.05 V A VO IOSINK VO = + 0.5 V VIN1 = VDD / 2 + 0.05 V VIN2 = VDD / 2 - 0.05 V
- + VIN1 VIN2
7. Common Mode Input Voltage, VCM & Common Mode Rejection Ratio, CMRR VDD RF RS - + RF VDD 2 CMRR = -20log VO VO1 - VO2 VIN1 - VIN2 x RS R S + RF CMRR
RS VIN
Measure VO corresponding to VIN1 = 0 V and VIN2 = 2.1 V
8. Total Harmonic Distortion, THD VDD Gain Variable RS VIN RF - + Gain = +1 - + VIN VDD THD Gain Variable 1 + RF / RS = 100 freq = 100 Hz, 1 kHz, 10 kHz VO
VO
VSS
VSS
9. Slew Rate, SR VDD
10. Gain, AV & Phase, GBW VDD RF RS
- + 1 M
VO 20 pF RS
- + 1 M
VO 20 pF
VSS
VSS
Rev.2.00 Feb 07, 2007 page 23 of 25
HA1630D01/02/03 Series
Package Dimensions
JEITA Package Code P-TSSOP8-4.4x3-0.65 RENESAS Code PTSP0008JC-B Previous Code TTP-8DAV MASS[Typ.] 0.034g
*1
D 5
F
8
NOTE) 1. DIMENSIONS"*1 (Nom)"AND"*2" DO NOT INCLUDE MOLD FLASH. 2. DIMENSION"*3"DOES NOT INCLUDE TRIM OFFSET.
bp
HE
E
*2
Terminal cross section ( Ni/Pd/Au plating )
Index mark
c
Reference Dimension in Millimeters Symbol
L1
1 Z e
4
*3
bp
x
M
A
A1
L
Detail F
y
D E A2 A1 A bp b1 c c1 HE e x y Z L L1
Min Nom Max 3.00 3.30 4.40
0.03 0.07 0.10 1.10 0.15 0.20 0.25 0.10 0.15 0.20 0 8 6.20 6.40 6.60 0.65 0.13 0.10 0.805 0.40 0.50 0.60 1.00
Package Name MMPAK-8
JEITA Package Code P-LSOP8-2.8 x 2.95 - 0.65
RENESAS Code PLSP0008JC-A
Previous Code
MASS[Typ.] 0.02 g
Unit: mm
0.13 +0.12 -0.03
2.95 0.2
4.0 0.3
2.8 0.1
0 to 0.1
0.65 1.95
0.1 M
0.2
1.1 0.1
0.3
0.1
Rev.2.00 Feb 07, 2007 page 24 of 25
0.6
+0.1 -0.05
HA1630D01/02/03 Series
Taping & Reel Specification
[Taping] Package Code TSSOP-8 MMPAK-8 W 12 12 P 8 4.0 Ao 6.9 3.15 Bo 3.6 4.35 Ko 1.7 -- E 1.75 -- 4.0 2.0 F 5.5 5.5 D1 1.5 1.05 Maximum Storage No. 3,000 pcs/reel 3,000 pcs/reel
1.75
Unit: mm
1.5 Cover Tape A0
F
K0
B0
P Tape withdraw direction
D1
W
W1
[Ordering Information] Ordering Unit 3,000 pcs
2.0 2.0 W2
Mark Indication
TSSOP-8 Product Name 0D01: HA1630D01 0D02: HA1630D02 0D03: HA1630D03 MMPAK-8 Product Name D01: HA1630D01 D02: HA1630D02 D03: HA1630D03
0D01
Trace Code
D01
Trace Code
Rev.2.00 Feb 07, 2007 page 25 of 25
A
[Reel] Package TSSOP-8 MMPAK-8
Tape width 12 12
W1 17.4 17.0
W2 13.4 13.0
A 330 178
13.0 0.5
Sales Strategic Planning Div.
Nippon Bldg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan
Notes: 1. This document is provided for reference purposes only so that Renesas customers may select the appropriate Renesas products for their use. Renesas neither makes warranties or representations with respect to the accuracy or completeness of the information contained in this document nor grants any license to any intellectual property rights or any other rights of Renesas or any third party with respect to the information in this document. 2. Renesas shall have no liability for damages or infringement of any intellectual property or other rights arising out of the use of any information in this document, including, but not limited to, product data, diagrams, charts, programs, algorithms, and application circuit examples. 3. You should not use the products or the technology described in this document for the purpose of military applications such as the development of weapons of mass destruction or for the purpose of any other military use. When exporting the products or technology described herein, you should follow the applicable export control laws and regulations, and procedures required by such laws and regulations. 4. All information included in this document such as product data, diagrams, charts, programs, algorithms, and application circuit examples, is current as of the date this document is issued. Such information, however, is subject to change without any prior notice. Before purchasing or using any Renesas products listed in this document, please confirm the latest product information with a Renesas sales office. Also, please pay regular and careful attention to additional and different information to be disclosed by Renesas such as that disclosed through our website. (http://www.renesas.com ) 5. Renesas has used reasonable care in compiling the information included in this document, but Renesas assumes no liability whatsoever for any damages incurred as a result of errors or omissions in the information included in this document. 6. When using or otherwise relying on the information in this document, you should evaluate the information in light of the total system before deciding about the applicability of such information to the intended application. Renesas makes no representations, warranties or guaranties regarding the suitability of its products for any particular application and specifically disclaims any liability arising out of the application and use of the information in this document or Renesas products. 7. With the exception of products specified by Renesas as suitable for automobile applications, Renesas products are not designed, manufactured or tested for applications or otherwise in systems the failure or malfunction of which may cause a direct threat to human life or create a risk of human injury or which require especially high quality and reliability such as safety systems, or equipment or systems for transportation and traffic, healthcare, combustion control, aerospace and aeronautics, nuclear power, or undersea communication transmission. If you are considering the use of our products for such purposes, please contact a Renesas sales office beforehand. Renesas shall have no liability for damages arising out of the uses set forth above. 8. Notwithstanding the preceding paragraph, you should not use Renesas products for the purposes listed below: (1) artificial life support devices or systems (2) surgical implantations (3) healthcare intervention (e.g., excision, administration of medication, etc.) (4) any other purposes that pose a direct threat to human life Renesas shall have no liability for damages arising out of the uses set forth in the above and purchasers who elect to use Renesas products in any of the foregoing applications shall indemnify and hold harmless Renesas Technology Corp., its affiliated companies and their officers, directors, and employees against any and all damages arising out of such applications. 9. You should use the products described herein within the range specified by Renesas, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas shall have no liability for malfunctions or damages arising out of the use of Renesas products beyond such specified ranges. 10. Although Renesas endeavors to improve the quality and reliability of its products, IC products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Please be sure to implement safety measures to guard against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other applicable measures. Among others, since the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system manufactured by you. 11. In case Renesas products listed in this document are detached from the products to which the Renesas products are attached or affixed, the risk of accident such as swallowing by infants and small children is very high. You should implement safety measures so that Renesas products may not be easily detached from your products. Renesas shall have no liability for damages arising out of such detachment. 12. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written approval from Renesas. 13. Please contact a Renesas sales office if you have any questions regarding the information contained in this document, Renesas semiconductor products, or if you have any other inquiries.
RENESAS SALES OFFICES
Refer to "http://www.renesas.com/en/network" for the latest and detailed information. Renesas Technology America, Inc. 450 Holger Way, San Jose, CA 95134-1368, U.S.A Tel: <1> (408) 382-7500, Fax: <1> (408) 382-7501 Renesas Technology Europe Limited Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K. Tel: <44> (1628) 585-100, Fax: <44> (1628) 585-900 Renesas Technology (Shanghai) Co., Ltd. Unit 204, 205, AZIACenter, No.1233 Lujiazui Ring Rd, Pudong District, Shanghai, China 200120 Tel: <86> (21) 5877-1818, Fax: <86> (21) 6887-7898 Renesas Technology Hong Kong Ltd. 7th Floor, North Tower, World Finance Centre, Harbour City, 1 Canton Road, Tsimshatsui, Kowloon, Hong Kong Tel: <852> 2265-6688, Fax: <852> 2730-6071 Renesas Technology Taiwan Co., Ltd. 10th Floor, No.99, Fushing North Road, Taipei, Taiwan Tel: <886> (2) 2715-2888, Fax: <886> (2) 2713-2999 Renesas Technology Singapore Pte. Ltd. 1 Harbour Front Avenue, #06-10, Keppel Bay Tower, Singapore 098632 Tel: <65> 6213-0200, Fax: <65> 6278-8001 Renesas Technology Korea Co., Ltd. Kukje Center Bldg. 18th Fl., 191, 2-ka, Hangang-ro, Yongsan-ku, Seoul 140-702, Korea Tel: <82> (2) 796-3115, Fax: <82> (2) 796-2145
http://www.renesas.com
Renesas Technology Malaysia Sdn. Bhd Unit 906, Block B, Menara Amcorp, Amcorp Trade Centre, No.18, Jalan Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia Tel: <603> 7955-9390, Fax: <603> 7955-9510
(c) 2007. Renesas Technology Corp., All rights reserved. Printed in Japan.
Colophon .7.0


▲Up To Search▲   

 
Price & Availability of HA1630D01

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X